Last modified: Jun 08, 2025 By Alexander Williams

Install PyCUDA in Python - Quick Guide

PyCUDA lets you use NVIDIA GPUs for parallel computing in Python. It combines Python's ease with CUDA's power.

Prerequisites

Before installing PyCUDA, ensure you have:

- A NVIDIA GPU with CUDA support.

- Python 3.6 or later installed.

- NVIDIA drivers and CUDA Toolkit installed.

Check your GPU's CUDA compatibility on NVIDIA's website.

Install PyCUDA

Use pip to install PyCUDA:


pip install pycuda

This installs PyCUDA and its dependencies.

Verify Installation

Run this Python code to check if PyCUDA works:


import pycuda.driver as cuda
import pycuda.autoinit

print("PyCUDA installed successfully!")

If no errors appear, PyCUDA is ready.

Run a Simple PyCUDA Program

Here's a basic example to test PyCUDA:


import pycuda.autoinit
import pycuda.driver as drv
import numpy as np
from pycuda.compiler import SourceModule

# Create a simple CUDA kernel
mod = SourceModule("""
    __global__ void multiply(float *a, float *b, float *c) {
        int idx = threadIdx.x;
        c[idx] = a[idx] * b[idx];
    }
""")

multiply = mod.get_function("multiply")

# Create arrays
a = np.random.randn(10).astype(np.float32)
b = np.random.randn(10).astype(np.float32)
c = np.zeros_like(a)

# Run the kernel
multiply(drv.In(a), drv.In(b), drv.Out(c), block=(10,1,1))

print("Input A:", a)
print("Input B:", b)
print("Output C:", c)

This multiplies two arrays using GPU.

Troubleshooting

If you get errors:

- Ensure CUDA Toolkit matches your GPU.

- Check Python and PyCUDA versions.

- Update NVIDIA drivers.

For more GPU tools, see Install PyOpenCL in Python.

Conclusion

PyCUDA brings GPU power to Python. Follow these steps to install and test it. For data visualization, check How to Install Pygal in Python.

Now you're ready for high-performance computing with PyCUDA!