Last modified: Jun 08, 2025 By Alexander Williams
Install PyCUDA in Python - Quick Guide
PyCUDA lets you use NVIDIA GPUs for parallel computing in Python. It combines Python's ease with CUDA's power.
Prerequisites
Before installing PyCUDA, ensure you have:
- A NVIDIA GPU with CUDA support.
- Python 3.6 or later installed.
- NVIDIA drivers and CUDA Toolkit installed.
Check your GPU's CUDA compatibility on NVIDIA's website.
Install PyCUDA
Use pip
to install PyCUDA:
pip install pycuda
This installs PyCUDA and its dependencies.
Verify Installation
Run this Python code to check if PyCUDA works:
import pycuda.driver as cuda
import pycuda.autoinit
print("PyCUDA installed successfully!")
If no errors appear, PyCUDA is ready.
Run a Simple PyCUDA Program
Here's a basic example to test PyCUDA:
import pycuda.autoinit
import pycuda.driver as drv
import numpy as np
from pycuda.compiler import SourceModule
# Create a simple CUDA kernel
mod = SourceModule("""
__global__ void multiply(float *a, float *b, float *c) {
int idx = threadIdx.x;
c[idx] = a[idx] * b[idx];
}
""")
multiply = mod.get_function("multiply")
# Create arrays
a = np.random.randn(10).astype(np.float32)
b = np.random.randn(10).astype(np.float32)
c = np.zeros_like(a)
# Run the kernel
multiply(drv.In(a), drv.In(b), drv.Out(c), block=(10,1,1))
print("Input A:", a)
print("Input B:", b)
print("Output C:", c)
This multiplies two arrays using GPU.
Troubleshooting
If you get errors:
- Ensure CUDA Toolkit matches your GPU.
- Check Python and PyCUDA versions.
- Update NVIDIA drivers.
For more GPU tools, see Install PyOpenCL in Python.
Conclusion
PyCUDA brings GPU power to Python. Follow these steps to install and test it. For data visualization, check How to Install Pygal in Python.
Now you're ready for high-performance computing with PyCUDA!