Last modified: Nov 07, 2024 By Alexander Williams

JSON Merge Patch in Python: Efficient Data Merging Guide

JSON Merge Patch provides a simple way to modify JSON documents. Unlike the more complex JSON Patch operations, merge patch offers a straightforward approach to updating JSON structures.

Understanding JSON Merge Patch

JSON Merge Patch (RFC 7386) defines a format for describing changes to JSON documents. When working with complex JSON data, similar to streaming JSON, efficient merging becomes crucial.

Basic Implementation

Let's implement a basic JSON Merge Patch function in Python:


def merge_patch(target, patch):
    if isinstance(patch, dict):
        if not isinstance(target, dict):
            target = {}
        for key, value in patch.items():
            if value is None:
                target.pop(key, None)
            else:
                target[key] = merge_patch(target.get(key, {}), value)
        return target
    return patch

# Example usage
original = {
    "name": "John",
    "age": 30,
    "address": {
        "street": "123 Main St",
        "city": "Boston"
    }
}

patch = {
    "age": 31,
    "address": {
        "city": "New York",
        "zip": "10001"
    }
}

Apply the merge patch:


result = merge_patch(original, patch)
print(result)


{
    'name': 'John',
    'age': 31,
    'address': {
        'street': '123 Main St',
        'city': 'New York',
        'zip': '10001'
    }
}

Handling Null Values

In JSON Merge Patch, null values indicate property removal. This behavior differs from regular JSON handling.


patch_with_null = {
    "name": None,
    "address": {
        "street": None
    }
}

result = merge_patch(original, patch_with_null)
print(result)


{
    'age': 30,
    'address': {
        'city': 'Boston'
    }
}

Error Handling

Implement robust error handling when working with merge patches:


def safe_merge_patch(target, patch):
    try:
        return merge_patch(target, patch)
    except TypeError as e:
        raise ValueError(f"Invalid merge patch format: {e}")
    except Exception as e:
        raise ValueError(f"Merge patch operation failed: {e}")

Working with Complex Structures

When dealing with nested structures, similar to memory-optimized JSON, careful handling is required:


complex_data = {
    "users": [
        {"id": 1, "name": "John"},
        {"id": 2, "name": "Jane"}
    ],
    "settings": {
        "theme": "dark",
        "notifications": {
            "email": True,
            "push": False
        }
    }
}

patch = {
    "settings": {
        "notifications": {
            "push": True
        }
    }
}

Best Practices

Follow these guidelines for effective merge patch operations:

  • Always validate input data before merging
  • Handle null values properly
  • Implement proper error handling
  • Consider using deepcopy for preserving original data

Conclusion

JSON Merge Patch provides a simple yet powerful way to update JSON documents in Python. When combined with proper error handling and validation, it becomes a robust solution for JSON data manipulation.