Last modified: Dec 08, 2024 By Alexander Williams
Python Pandas rename() Simplified
The rename()
function in Pandas is a versatile tool for renaming column or index labels in DataFrames. It’s essential for organizing data effectively.
Table Of Contents
What is rename()?
rename()
allows you to rename specific columns or index labels in a DataFrame or Series for better clarity and usability.
Basic Syntax of rename()
DataFrame.rename(mapper=None, *, index=None, columns=None, axis=None, copy=True, inplace=False)
Parameters:
index
: Dictionary-like or function to rename index labels.columns
: Dictionary-like or function to rename column labels.inplace
: Modify the DataFrame directly ifTrue
. Default isFalse
.
Renaming Columns in a DataFrame
Let’s start with renaming columns using a dictionary:
import pandas as pd
data = {'Name': ['Alice', 'Bob'], 'Age': [25, 30]}
df = pd.DataFrame(data)
# Rename columns
renamed_df = df.rename(columns={'Name': 'Full Name', 'Age': 'Years'})
print(renamed_df)
Full Name Years
0 Alice 25
1 Bob 30
Renaming Index Labels
You can also rename index labels using the index
parameter:
# Rename index labels
renamed_index_df = df.rename(index={0: 'Row1', 1: 'Row2'})
print(renamed_index_df)
Name Age
Row1 Alice 25
Row2 Bob 30
Renaming Using Functions
Use a function to modify column or index labels:
# Use a function to rename columns
func_renamed_df = df.rename(columns=str.lower)
print(func_renamed_df)
name age
0 Alice 25
1 Bob 30
Using inplace=True
Modify the DataFrame in place without creating a new object:
# Rename columns in place
df.rename(columns={'Name': 'First Name'}, inplace=True)
print(df)
First Name Age
0 Alice 25
1 Bob 30
Applications of rename()
The rename()
method is particularly useful for:
- Standardizing column names for consistent analysis.
- Preparing datasets for merging or concatenation.
- Improving readability and clarity of data.
Learn about merging datasets with our guide on Pandas merge().
Renaming Rows and Columns Simultaneously
Rename both rows and columns in a single call:
# Rename both rows and columns
renamed_df = df.rename(index={0: 'Row1'}, columns={'Age': 'Years'})
print(renamed_df)
First Name Years
Row1 Alice 25
1 Bob 30
Conclusion
The rename()
function is a vital tool for data cleaning and organization in Pandas. It helps make datasets intuitive and easy to understand.
For advanced data handling, explore our guide on Pandas agg().