Last modified: Dec 31, 2024 By Alexander Williams

Plotly Express Line: Create Beautiful Time Series Plots

Plotly Express's line() function offers a streamlined approach to creating interactive line plots with minimal code. It's particularly powerful for time series data and trend visualization.

Basic Line Plot Creation

Let's start with a simple example of how to create a basic line plot using Plotly Express. The process is straightforward and requires minimal configuration.


import plotly.express as px
import pandas as pd

# Create sample data
df = pd.DataFrame({
    'Date': pd.date_range(start='2023-01-01', periods=10),
    'Value': [10, 15, 13, 17, 20, 18, 22, 25, 23, 28]
})

# Create line plot
fig = px.line(df, x='Date', y='Value', 
              title='Simple Time Series Plot')
fig.show()

Advanced Customization Options

While line() provides excellent default settings, you can enhance your visualizations with additional parameters. For more layout customization, check out Plotly Update Layout guide.


# Create advanced line plot
fig = px.line(df, 
              x='Date', 
              y='Value',
              title='Customized Time Series Plot',
              markers=True,  # Add markers to line
              line_shape='spline',  # Smooth line
              template='plotly_dark')  # Dark theme

# Customize layout
fig.update_traces(line_color='#00ff00', line_width=2)
fig.update_layout(
    xaxis_title="Time Period",
    yaxis_title="Measurements",
    showlegend=True
)
fig.show()

Multiple Lines and Color Coding

One of the powerful features of Plotly Express line plots is the ability to display multiple lines with automatic color coding. This is perfect for comparing different categories.


# Create multi-category data
df_multi = pd.DataFrame({
    'Date': pd.date_range(start='2023-01-01', periods=10).repeat(3),
    'Category': ['A', 'B', 'C'] * 10,
    'Value': [10, 15, 20, 12, 18, 22, 14, 19, 25, 16,
              20, 25, 18, 22, 28, 16, 21, 27, 19, 24,
              30, 25, 28, 32, 27, 31, 35, 29, 33, 38]
})

# Create multi-line plot
fig = px.line(df_multi, 
              x='Date', 
              y='Value', 
              color='Category',
              title='Multiple Categories Comparison',
              labels={'Value': 'Measurements', 'Date': 'Time Period'})

fig.show()

Animation and Interactive Features

You can create animated line plots using the animation_frame parameter. This is particularly useful for showing how trends evolve over time. For more interactive features, explore the Plotly fig.show() guide.


# Create animated line plot
df_anim = df_multi.copy()
df_anim['Year'] = df_anim['Date'].dt.year
fig = px.line(df_anim,
              x='Date',
              y='Value',
              color='Category',
              animation_frame='Year',
              title='Animated Time Series')
fig.show()

Error Handling and Best Practices

When working with px.line(), it's important to ensure your data is properly formatted. Here are some common pitfalls to avoid:

  • Ensure your x-axis data is properly sorted
  • Handle missing values appropriately
  • Use appropriate data types for dates and numerical values

# Example with error handling
def create_line_plot(df, x_col, y_col):
    try:
        # Sort data by x-axis
        df = df.sort_values(by=x_col)
        
        # Handle missing values
        df = df.dropna(subset=[x_col, y_col])
        
        fig = px.line(df, x=x_col, y=y_col,
                     title=f'{y_col} vs {x_col}')
        return fig
    except Exception as e:
        print(f"Error creating plot: {e}")
        return None

Conclusion

Plotly Express's line() function provides a powerful and flexible way to create interactive line plots. Its automatic configuration makes it perfect for quick visualizations while still offering extensive customization options.

By combining these features with other Plotly tools like scatter plots, you can create comprehensive and insightful visualizations for your data analysis needs.