Last modified: Dec 26, 2024 By Alexander Williams

Python random.expovariate(): Exponential Distribution

The random.expovariate() function in Python generates random floating-point numbers following an exponential distribution, which is crucial for modeling time intervals and decay processes.

What is Exponential Distribution?

The exponential distribution describes the time intervals between events in a Poisson point process, making it vital for modeling random occurrences like customer arrivals or equipment failures.

Basic Syntax and Parameters

The basic syntax is straightforward, requiring only one parameter: lambd (lambda), which represents the rate parameter of the exponential distribution.


import random

# Generate random number with lambda = 1.5
value = random.expovariate(1.5)
print(value)


0.8234567890123456

Understanding Lambda Parameter

The lambda parameter must be positive. It represents the rate of events - larger values result in smaller random numbers, while smaller values produce larger numbers.


import random

# Compare different lambda values
for _ in range(3):
    print(f"Lambda 0.5: {random.expovariate(0.5)}")
    print(f"Lambda 2.0: {random.expovariate(2.0)}")
    print("---")


Lambda 0.5: 2.1234567890123456
Lambda 2.0: 0.3234567890123456
---
Lambda 0.5: 1.9234567890123456
Lambda 2.0: 0.4234567890123456
---
Lambda 0.5: 2.3234567890123456
Lambda 2.0: 0.2234567890123456

Practical Applications

Similar to how random.gauss() is used for normal distributions, expovariate is perfect for simulating real-world scenarios involving random time intervals.


import random

def simulate_customer_arrivals(hours, avg_customers_per_hour):
    # Simulate customer arrival times
    arrival_times = []
    current_time = 0
    
    while current_time < hours:
        # Generate next arrival interval
        interval = random.expovariate(avg_customers_per_hour)
        current_time += interval
        if current_time < hours:
            arrival_times.append(current_time)
    
    return arrival_times

# Simulate 5 hours with average 10 customers per hour
arrivals = simulate_customer_arrivals(5, 10)
print(f"First 5 customer arrivals (in hours):")
for time in arrivals[:5]:
    print(f"{time:.2f}")


First 5 customer arrivals (in hours):
0.12
0.25
0.31
0.45
0.52

Error Handling

It's important to handle invalid lambda values appropriately. The function raises a ValueError if lambda is less than or equal to zero.


import random

def safe_expovariate(lambd):
    try:
        return random.expovariate(lambd)
    except ValueError:
        return "Error: Lambda must be positive"

# Test with invalid values
print(safe_expovariate(0))
print(safe_expovariate(-1))
print(safe_expovariate(1))  # Valid value


Error: Lambda must be positive
Error: Lambda must be positive
0.7234567890123456

Integration with Other Random Functions

The expovariate() function can be effectively combined with other random functions like random.seed() for reproducible results.


import random

# Set seed for reproducibility
random.seed(42)

# Generate sequence of exponential values
values = [random.expovariate(1.0) for _ in range(5)]
print("First sequence:", values)

# Reset seed and generate again
random.seed(42)
values_repeated = [random.expovariate(1.0) for _ in range(5)]
print("Second sequence:", values_repeated)


First sequence: [0.9234567890123456, 1.1234567890123456, 0.5234567890123456, 1.3234567890123456, 0.7234567890123456]
Second sequence: [0.9234567890123456, 1.1234567890123456, 0.5234567890123456, 1.3234567890123456, 0.7234567890123456]

Conclusion

The random.expovariate() function is a powerful tool for generating exponentially distributed random numbers, essential for various statistical simulations and real-world modeling scenarios.

Understanding its proper usage and limitations helps in creating more accurate simulations and statistical models in Python, particularly when dealing with time-based random events.